

# **NOTA TÉCNICA**



Rede de filões nos gabros do Maciço de Sines (foto de Luís Lopes)

Data: Junho de 2019

ID do Projeto: PTDC/CTA-GEO/31853/2017









# Nota Técnica

Critérios usados na seleção de rochas máficas e ultramáficas destinadas a carbonatação mineral

Autor/Author: Alexandre Araújo Data/Date: Junho de 2019 Versão/Filename and version:

ID do projeto/Project ID NUMBER: PTDC/CTA-GEO/31853/2017



# Índice

| 1.   | Critério 1                                         | 4 |
|------|----------------------------------------------------|---|
| 1.1. | Natureza Litológica                                | 4 |
| 2.   | Critério 2                                         | 5 |
| 2.1. | Área                                               | 5 |
| 3.   | Critério 3                                         | 5 |
| 3.1. | Volume Espectável                                  | 5 |
| 4.   | Critério 4                                         | 5 |
| 4.1. | Existência de uma Camada Selante a Teto            | 5 |
| 5.   | Critério 5                                         | 5 |
| 5.1. | Fraturação do Maciço                               | 6 |
| 6.   | Critério 6                                         | 6 |
| 6.1. | Distância às Fontes de Produção de CO <sub>2</sub> | 6 |
| 7.   | Critério 7                                         | 6 |
| 7.1. | Demografia                                         | 6 |
| 8.   | Critério 8                                         | 6 |
| 8.1. | Existência de Aquíferos Produtivos                 | 6 |
| 9.   | Critério 9                                         | 7 |
| 9.1. | Restrições Ambientais                              | 7 |
| 10.  | Síntese                                            | 7 |



## Nota Técnica

# Critérios usados na seleção de rochas máficas e ultramáficas destinadas a carbonatação mineral

Junho de 2019

### Objetivo

O projecto InCarbon procura avaliar o potencial de utilização de formações geológicas específicas para o armazenamento de CO<sub>2</sub> que possa vir a ser capturado em centrais termoelétricas localizadas no Sul do Pais.

#### Resumo

Na primeira actividade do projecto foram avaliadas várias unidades geológicas situadas na região Alentejo. Estas unidades foram selecionadas com base na análise da Carta Geológica de Portugal (escalas 1/50.000, 1/200.000 e 1/500.000) e em reconhecimentos de campo. Nos maciços mais promissores o trabalho de campo incluiu uma avaliação prévia da fraturação e a recolha de amostras para a sua caracterização petrográfica e para os estudos previstos nas etapas seguintes do projecto (caracterização laboratorial). No presente relatório apresentam-se 9 critérios que foram usados para a seleção e hierarquização dos maciços rochosos a abordar nas próximas etapas do projecto. A maioria dos critérios são de natureza geológica mas teve-se também em conta critérios sócio-económicos, alguns considerados bastante relevantes. A aplicação de cada critério aos maciços em estudo traduziu-se na atribuição de um valor numérico (ver quadro I) e as unidades geológicas estudadas foram avaliadas com base no somatório dos valores obtidos. Para alguns critérios, as situações desfavoráveis foram consideradas eliminatórias e, nessas situações, a quantificação tornou-se irrelevante.



#### 1. Critério 1

#### 1.1. Natureza Litológica

Sendo a composição química das rochas um aspecto fundamental para se atingir os objectivos do projecto, os maciços estudados foram divididos em 3 categorias a que se atribuíram os índices 1, 6 e 9. A classificação modal expedita realizada com base na percentagem relativa de minerais máficos observados em lâmina delgada, obedeceu às seguintes classes:

Ultramáfica: >90% de minerais máficosMáfica: 90-40% de minerais máficos

Intermédia: 49-10% de minerais máficos

**Tabela 1** – Critérios usados para a seleção e hierarquização das unidades geológicas estudadas.

| Critérios Geológicos Índice |                             |                               |              |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------------|--------------|--|--|--|--|--|--|
|                             | Litologia                   | Ultramáfica                   | 9            |  |  |  |  |  |  |
|                             |                             | Máfica                        | 6            |  |  |  |  |  |  |
| Critério 1                  |                             | Intermédia ou máfica          |              |  |  |  |  |  |  |
|                             |                             | alterada por                  | 1            |  |  |  |  |  |  |
|                             |                             | hidrotermalismo               |              |  |  |  |  |  |  |
|                             | Área                        | Superior a 20km <sup>2</sup>  | 3            |  |  |  |  |  |  |
| Critério 2                  |                             | Entre 10 e 20km <sup>2</sup>  | 2            |  |  |  |  |  |  |
|                             |                             | Inferior a 10 km <sup>2</sup> | 1            |  |  |  |  |  |  |
|                             |                             | Superior a 20km <sup>3</sup>  | 6            |  |  |  |  |  |  |
| Critério 3                  | Volume espectável           | Entre 10 e 20km <sup>3</sup>  | 3            |  |  |  |  |  |  |
|                             |                             | Inferior a 10 km <sup>3</sup> | Eliminatório |  |  |  |  |  |  |
| Critério 4                  | Existência de um            | Sim                           | 3            |  |  |  |  |  |  |
| Citterio 4                  | selante a teto              | Não                           | 0            |  |  |  |  |  |  |
|                             | Fraturação                  | > de 10 fraturas/m            | 9            |  |  |  |  |  |  |
| Critério 5                  |                             | 3 a 10 fraturas/m             | 6            |  |  |  |  |  |  |
|                             |                             | < de 3 fratura/m              | 1            |  |  |  |  |  |  |
|                             | Critérios Sóci              | o-económicos                  |              |  |  |  |  |  |  |
|                             | Distância às fontes de      | Menos de 10 km                | 9            |  |  |  |  |  |  |
| Critério 6                  | produção de CO <sub>2</sub> | Entre 10 e 100km              | 6            |  |  |  |  |  |  |
|                             | produção de CO <sub>2</sub> | Mais de 100 km                | 1            |  |  |  |  |  |  |
| Critério 7                  | Demografia                  | Zona Rural                    | 3            |  |  |  |  |  |  |
| Criterio 7                  | Delliografia                | Zona urbana                   | 0            |  |  |  |  |  |  |
| Critério 8                  | Aquífero produtivo          | Não                           | 0            |  |  |  |  |  |  |
| Criterio 8                  | Aquileto produtivo          | Sim                           | Eliminatório |  |  |  |  |  |  |
| Critério 9                  | Restrições ambientais       | Sem restrições                | 0            |  |  |  |  |  |  |
| Criterio 9                  | nestrições arribientais     | Zona protegida                | Eliminatório |  |  |  |  |  |  |



#### 2. Critério 2

#### 2.1. Área

Sendo de uma forma geral bastante rara a informação sobre a geologia de sub-superfície, a área de afloramento é um indicador extremamente importante para a avaliação das dimensões das unidades em estudo. Na maioria dos casos a área em causa corresponde realmente à área de afloramento em mapa e pode ser estimada directamente mas nos casos em a unidade em estudo está parcialmente coberta por sedimentos mais recentes, a sua determinação tornou-se um pouco mais difícil. Em situações de incerteza optou-se sempre por uma avaliação conservadora. De acordo com este critério definiram-se 3 categorias a que se atribuíram os índices 1, 2 e 3.

#### 3. Critério 3

#### 3.1. Volume Espectável

O volume das massas rochosas foi estimado tendo em conta o parâmetro anterior, a natureza de cada unidade geológica (estratiforme ou batólito) e nalguns casos tendo em conta alguma informação geofísica disponível. Tal como para o critério anterior, em situações de incerteza optou-se sempre por uma avaliação conservadora. Definiram-se 3 categorias de maciços sendo a situação mais desfavorável (volumes inferiores a 10 km³) considerada eliminatória, independentemente do maciço poder eventualmente apresentar valores excelentes nos restantes critérios.

#### 4. Critério 4

#### 4.1. Existência de uma Camada Selante a Teto

A existência de uma cobertura impermeável sobre uma unidade geológica com características favoráveis à realização de ensaios de carbonatação in-situ, representa uma situação estrutural particularmente favorável uma vez que essa cobertura funcionará como barreira à ascensão do CO<sub>2</sub>. No Alentejo os níveis inferiores dos depósitos terciários correspondem geralmente a sedimentos argilosos bastante impermeáveis. As unidades estudadas na maioria dos casos afloram sem qualquer cobertura, ou estão cobertas por formações miocénicas e mais recentes, estas predominantemente arenosas. Em situações mais favoráveis apresentam essa cobertura constituída por sedimentos argilosos de idade terciária antiga.

Para este critério foram definidas apenas duas categorias, atribuindo-se o índice 3 às unidades cobertas por esses depósitos argilosos e zero às unidades que afloram directamente, ou que estão apenas cobertas por depósitos arenosos.

#### 5. Critério 5



#### 5.1. Fraturação do Maciço

A densidade de fraturas controla a permeabilidade e a porosidade dos maciços rochosos, sendo que uma fraturação mais intensa facilita a circulação de fluidos e a carbonatação in-situ. Para cada maciço a densidade da fraturação foi avaliada com base no facto de se tratarem de corpos sin, tardi ou pós-tectónicos e/ou na observação dessa fraturação em afloramento e em pedreiras com recurso à realização de scan lines. Para este critério definiram-se 3 categorias a que se atribuíram os índices 1, 6 e 9.

#### 6. Critério 6

#### 6.1. Distância às Fontes de Produção de CO<sub>2</sub>

O transporte de CO<sub>2</sub> ao longo de grandes distâncias é um factor penalizante num projecto deste tipo. Assim, para este critério definiram-se 3 categorias em função da distância às quais se atribuíram os valores 1, 6 e 9.

#### 7. Critério 7

#### 7.1. Demografia

Embora um projeto deste tipo tenho por objectivo dar um importante contributo para a neutralidade carbónica, a criação de uma instalação piloto destinada à carbonatação in-situ dificilmente terá uma boa aceitação social em zonas urbanas. Para este critério foram definidas apenas duas categorias, atribuindo-se o índice 3 às regiões rurais e zero às zonas urbanas.

#### 8. Critério 8

#### 8.1. Existência de Aquíferos Produtivos

Sendo as águas subterrâneas um bem protegido que deve ser preservado, as unidades geológicas que correspondem a aquíferos produtivos são liminarmente excluídas com base neste critério, independentemente de poderem apresentar várias outras características favoráveis aos objectivos do projecto.



#### 9. Critério 9

#### 9.1. Restrições Ambientais

Os parques naturais e outras zonas protegidas estão interditados a este tipo de projectos. Este critério foi tomado em conta mas não se identificaram formações geológicas favoráveis a carbonatação in-situ situadas em áreas protegidas.

#### 10. Síntese

Sintetizando os resultados, nesta primeira actividade do projecto foram pré-selecionadas 10 unidades geológicas todas correspondentes a rochas ígneas e/ou metamórficas, cuja localização está representada na figura 1. Para cada uma destas unidades geológicas, determinaram-se os valores correspondentes aos 9 parâmetros descritos e somaram-se esses valores. No quadro II apresenta-se o resultado destes cálculos e a respectiva hierarquização das unidades, em termos das suas potencialidades para a realização de ensaios carbonatação in-situ.

Da análise da tabela 2 conclui-se que entre as unidades estudadas, duas foram eliminadas por falta de dimensão (Maciço de Veiros e sequências ofiolíticas por se apresentarem muito fragmentadas) e duas outras foram também eliminadas por corresponderem a aquíferos produtivos (Gabros de Beja e Maciço de Alter do Chão/Cabeço de Vide).

Relativamente às restantes seis unidades, é de destacar a excelente classificação atingida pelos gabros e dioritos da região de Torrão-Odivelas. O Maciço de Sines, classificado em segundo lugar, tem como grande vantagem a sua localização junto das fontes produtoras de CO<sub>2</sub> no entanto tem como desvantagem situar-se numa zona urbana. Estas duas unidades geológicas serão o alvo das próximas etapas do projecto InCarbon.

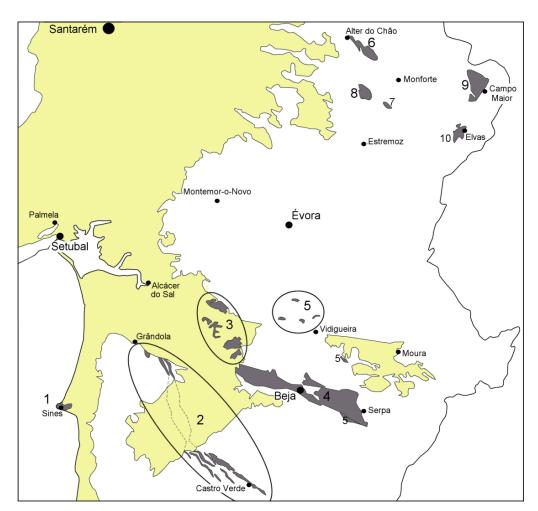



Figura 1 – Localização das unidades estudadas: 1 – Maciço ígneo de Sines; 2 – Diabases e espilitos da Faixa Piritosa Ibérica; 3 - Gabros e dioritos da região de Torrão-Odivelas; 4 – Gabros de Beja; 5 – Sequências ofiolíticas; 6 – Maciço de Alter do Chão/Cabeço de Vide; 7 - Maciço de Veiros; 8 – Maciço de Vale de Maceiras; 9 – Maciço de Campo Maior; 10 – Maciço de Elvas.



**Tabela 2** – Classificação e hierarquização das unidades geológicas estudadas.

| Unidade geológica                             | Critério 1 | Critério 2 | Critério3 | Critério 4 | Critério 5 | Critério 6 | Critério 7 | Critério 8 | Critério 9 | Somatório |
|-----------------------------------------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|
| 1 Maciço de Sines                             | 6          | 3          | 6         | 0          | 6          | 9          | 0          | 0          | 0          | 30        |
| 2 Vulcânicas da<br>Faixa Piritosa             | 1          | 2          | 3         | 3          | 9          | 6          | 3          | 0          | 0          | 27        |
| 3 Gabros e<br>dioritos do Torrão-<br>Odivelas | 6          | 3          | 6         | 3          | 1          | 6          | 3          | 0          | 0          | 28        |
| 4 Gabros de Beja                              | 6          | 3          | 6         | 0          | 1          | 1          | 3          | Elimin.    | 0          |           |
| 5 Sequências ofiolíticas                      | 9          | 1          | Elimin.   | 0          | 9          | 6          | 3          | 0          | 0          |           |
| 6 Maciço de Alter<br>do Chão/Cab. Vide        | 9          | 3          | 6         | 0          | 6          | 1          | 3          | Elimin.    | 0          |           |
| 7 Maciço de<br>Veiros                         | 6          | 1          | Elimin.   | 0          | 1          | 1          | 3          | 0          | 0          |           |
| 8 Maciço de Vale<br>de Maceiras               | 6          | 2          | 3         | 0          | 1          | 1          | 3          | 0          | 0          | 16        |
| 9 Maciço de<br>Campo Maior                    | 6          | 3          | 6         | 0          | 6          | 1          | 3          | 0          | 0          | 25        |
| 10 Maciço de<br>Elvas                         | 6          | 2          | 3         | 0          | 6          | 1          | 0          | 0          | 0          | 18        |



# **NOTA TÉCNICA**



Rede de filões nos gabros do Maciço de Sines (foto de Luís Lopes)

Data: Junho de 2019

ID do Projeto: PTDC/CTA-GEO/31853/2017





