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Abstract: This article describes the screening, ranking and characterization of ultramafic and mafic
rocks in southern Portugal for mineral carbonation as an alternative to conventional CO2 storage
in sedimentary rocks. A set of criteria including mineralogy, structure, surface area, distance to
CO2 sources, expected volume, and socioeconomic conditions was applied to screen ultramafic and
mafic rock massifs in the Alentejo region, southern Portugal. Ranking of the massifs indicated that
the plutonic massifs of Sines and of Torrão-Odivelas were the most promising. A characterization
was made of the Sines massif, a subvolcanic massif composed mostly of gabbros and diorites,
located immediately adjacent to the CO2 sources and outcropping along 300 km2 onshore and
offshore. These studies confirmed that these rock samples exhibited the appropriate mineralogical
and geochemical features, but also indicated that the secondary porosity provided by the fracture
patterns was very small.

Keywords: CO2 capture; utilization and storage; mafic plutonic rocks; mineral carbonation; screening
and ranking; Sines massif; Portugal

1. Introduction

According to the International Energy Agency [1], achieving the Paris Climate Agreement
targets of global warming below 2 ◦C by 2100 while developing efforts to limit temperature rising to
1.5 ◦C [2] implies wide scale deployment of CO2 capture, utilization, and storage (CCUS). The scenarios
developed by the IEA by the 2060 CCUS should contribute to 14% of the required reduction in CO2

emissions to achieve a scenario where temperatures are less than 2 ◦C, or 32% to achieve the 1.5 ◦C
limit scenario.

Portugal has been on the forefront of policies to reduce CO2 emissions, having established a
roadmap to reach carbon neutrality by 2050 [3]. This policy has been reinforced by the Green Deal
announced in December 2019 by the European Commission, which sets the same carbon neutrality
target by 2050 for the European Union [4].
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The roadmap does not explicitly consider CCUS as one of the technologies that should contribute
to carbon neutrality in Portugal, although earlier studies have demonstrated that CCUS will be required
in some industry sectors (e.g., cement) as early as 2030 [5,6].

According to the European Union carbon market database (EU ETS), in 2018, the Portuguese CO2

emissions from the industrial and power sectors amounted to 26.2 Mt CO2 [7], with the most important
emissions cluster located in southern Portugal, extending from Setúbal to the Sines industrial area,
being responsible for 44% of all emissions in the country (Figure 1a). Although the main point source
in the region, the Sines Coal Power Plant, is to be decommissioned in 2023, the remaining sources
will account for more than 30% of all emissions from industrial sources (Figure 1b). Furthermore,
the socioeconomic relevance of the industry to the region imposes the need to seek alternatives to
decarbonization in the region.

The possibility of capturing CO2 at the Sines and Setúbal sources and storing it in offshore deep
saline aquifers was addressed previously [8,9], but was decided against due to low storage capacity
and high storage costs. The possibility of CO2 transport to other parts of the country with more
favorable geological storage conditions was studied in Seixas et al. [6] and is being further pursued
in the STRATEGY CCUS project [10], funded by the European Union’s Horizon 2020 to study the
development of CCUS in Southern and Eastern Europe, including a promising region in Portugal.

Nonetheless, the multiple ultramafic and mafic rock massifs in Alentejo could provide an
alternative for CO2 storage by mineral carbonation. The potential of ultramafic and mafic rocks for
CO2 storage rests in their ability to stabilize CO2 via mineral carbonation (e.g., [11–14]). These rocks
are enriched in Ca2+, Mg2+, and Fe2+ silicate minerals, which react with CO2 precipitate carbonate
minerals [15], leading to the trapping of the CO2 in a solid phase at a much faster rate than can
be expected in sedimentary silicate rocks. The feasibility of this process was demonstrated in the
CarbFix (Iceland) project [16] and Wallula (USA) project [17], in a process designated as in situ mineral
carbonation, in which CO2 is dissolved in water and injected into basalts. However, extensive studies
have also addressed an ex situ process, in which the ultramafic and mafic rocks are mined and
the mineral carbonation process takes place in plants under optimized pressure and temperature
conditions [18–20]. A third possibility that has been put forward as a geo-engineering technique is the
utilization of ultramafic rocks to sequester CO2 through enhanced weathering, in which the mined
and crushed rock is spread in large areas under atmospheric conditions to react with CO2, promoting
direct CO2 capture from the air [21,22].

Plutonic rocks, with a mineralogical and geochemical composition similar to basalts have, to the
best of our knowledge, not been considered for in situ mineral carbonation, since the low porosity
is seen as an impediment to industrial-scale implementation. However, if fracture patterns provide
enough secondary permeability and the CO2 volume to inject is not high, mafic plutonic rocks may
prove a valid environment for in situ mineral carbonation. That possibility, together with potential
utilization in ex situ mineral carbonation or enhanced weathering, indicates that ultramafic and mafic
rocks in the Alentejo region should be studied as an alternative to reduce CO2 emissions in the region.

This article is the first of two on the mineral carbonation potential in Alentejo. This first article
describes the procedure for selecting the ultramafic and mafic rock massifs; sets a screening and
ranking procedure for defining them with the highest potential; and describes the methods, techniques,
and results obtained in the geological, petrographic, and geochemical characterization of the Sines
massif, which was ranked with the highest potential. A second article [23] describes the experiments
carried out in a laboratory to characterize the mineral carbonation potential of rock samples from the
Sines Massif.
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Figure 1. (a) Distribution of main CO2 emissions sources in Portugal reported to the European Union 
carbon market database (EU ETS). The location of ultramafic and mafic rock massifs in the study area 
is shown in Figure 3. (b) Evolution of CO2 emissions in the study area and total national emissions 
from 2013 to 2018, as reported to the EU ETS. The sources in the target area were accountable for 44% 

Figure 1. (a) Distribution of main CO2 emissions sources in Portugal reported to the European Union
carbon market database (EU ETS). The location of ultramafic and mafic rock massifs in the study area is
shown in Figure 3. (b) Evolution of CO2 emissions in the study area and total national emissions from
2013 to 2018, as reported to the EU ETS. The sources in the target area were accountable for 44% of the
CO2 emissions from power and industrial sources in the country in 2018. The Sines coal power plant is
to be decommissioned in 2023, but the remaining sources in Sines and Setúbal will still be responsible
for more than 30% of the emissions from the industrial sector in the country.
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2. Methodology

Figure 2 depicts the overall approach to define and characterize the rock massifs, the techniques
applied, and the laboratory experiments, which are described in the second article [23] to establish the
potential for mineral carbonation.
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Figure 2. Diagram illustrating the methodology employed to screen, rank, and characterize the
rock massifs and rock samples. The samples were subsequently submitted to mineral carbonation
experiments in the laboratory, the results of which are the subject of a second article [23].

A first screening of mafic and ultramafic geological formations located in the study area,
the Alentejo region (Figure 1a), was made, using the geological map of Portugal (scales: 1/50,000,
1/200,000 and 1/500,000), an analysis of published information, and publicly available maps and reports.

A first field trip was made to outcrops of the screened rock massifs and samples were collected
for laboratory characterization, comprising thin section production, mineral identification, textural
description, and evaluation of the porosity by optical and conventional microscopy.

Next we used the mineralogical characterization of those samples, as well as other data resulting
from desk studies, to rank the different ultramafic and mafic rock massifs in terms of their theoretical
suitability for mineral carbonation. The criteria adopted in the ranking procedures are further described
in Section 2.1.

For the two highest-ranking rock massifs, we conducted detailed fieldwork and experiments to
identify the relevant fracture patterns at outcrop, along scanlines, and in boreholes. Representative
samples were submitted to a battery of petrographic, mineral chemistry, and geochemistry techniques
to fully characterize the samples. Those same techniques were applied to study the changes imposed
by a set of experimental runs in which the rock samples were put in contact with a brine saturated
in CO2 under pressure and temperature conditions that simulated the supercritical injection of CO2.
The techniques utilized for the characterization of the rock samples are described in Section 2.2, while
the results of the mineral carbonation experiments are addressed in Moita et al. [23].
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2.1. Screening and Ranking Criteria

The selection of geological reservoirs for CO2 storage in deep saline aquifers, depleted hydrocarbon
fields, or even uneconomic coal beds has well-established screening and ranking criteria [24–27], but the
selection of targets for mineral carbonation has yet to have sound and widely accepted procedures.

Nonetheless, given the number of ultramafic and mafic rock massif outcroppings in the study area,
we found a systematic selection procedure to be necessary, and we defined nine criteria for screening
and ranking of these formations. The criteria included geological conditions and socioeconomic and
environmental constraints. Each criterion was subdivided into two to three classes, to which relative
weights were assigned using integer values. In fact, the range of values assigned to each criterion was
debatable, but the chosen values reflected the relative importance that we attached to each criterion,
ranging from a maximum of nine in the criteria considered most relevant, down to a maximum of three
in what we considered to be secondary. The criteria to which we assigned only two values were related
to the existence, or not, of a certain condition. Finally, the studied geological units were hierarchized
on the basis of the sum of the obtained values. For some criteria, the most unfavorable situation was
considered eliminatory.

The criteria applied are listed in Table 1 and were as follows:

• Geological conditions

1. Lithological composition—the mineralogical composition of the rocks is a fundamental aspect to
address in order to achieve the desired objectives. An expedited modal classification based on the
relative percentage of mafic minerals (i.e., olivine, pyroxene, amphibole, and biotite) observed in
thin sections was used to classify each massif into three classes, favoring those targets with the
highest percentage of minerals enriched in calcium, magnesium, and iron.

2. Area—since data on subsurface geology in the study area are quite rare, the outcrop area is a
relevant indicator for a first assessment of the size of the targets under study. In most cases,
the mapped area corresponds to the outcrop area and can be estimated directly, but in cases
where the unit under study is partially covered by more recent sediments, its determination is
more difficult. Three classes were defined, and in situations of uncertainty, we always chose a
conservative assessment.

3. Expected volume—the volume of rock masses was estimated by considering the previous criterion
(area); the shape of each geological unit (stratiform or batholith); and, in some cases, any available
geophysical information. As was the case for the previous criterion, in situations of uncertainty,
a conservative assessment was always adopted.

4. Existence of a seal unit—the existence of an impermeable layer overlaying the target unit represents
a particularly favorable structural situation, as this cover will act as a barrier to CO2 leakage for
in situ mineral carbonation. The Carbfix project developed an injection method in which CO2 is
injected dissolved in water, and thus CO2 buoyancy will not occur and the existence of a seal
is not strictly necessary [11,28]. In Alentejo, the basal levels of tertiary deposits overlaying the
Paleozoic and Mesozoic massifs generally correspond to impermeable clayey sediments. In the
most favorable situations, where this tertiary coverage exists, a weight of 3 was assigned. In the
remaining situations, where the formations crop out without any cover, or are covered by sands
with Miocene age or later, a zero weight was assigned.

5. Fracture density—the main constraints when injecting fluids into plutonic rocks are low
permeability and porosity. Fracture density controls the permeability and porosity of rock
masses; a higher fracture density facilitates fluid circulation and thus in situ carbonation. For each
geological formation, the fracture density was assessed by fracture pattern studies in outcrops
and quarries using a scanline approach with measurement of fracture frequency. The massifs
were divided into three categories: more than 10 fractures/m, 3–10 fractures/m, and fewer than
3 fractures/m, to which indices 9, 6, and 1 were assigned, respectively.
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• Socioeconomic and environmental constraints

6. Distance to CO2 sources—transport of CO2 over long distances is a highly penalizing factor. Thus,
for this criterion, three categories were defined as a function of the distance to which values 9,
6, and 1 were assigned, respectively, for distances of less than 10 km, between 10 and 100 km,
and over 100 km.

7. Social and demographic situation—building an industry for in situ carbonation will not be well
accepted in urban areas. For this criterion, two categories were defined, wherein an index of
3 was assigned to rural regions and zero was assigned to urban areas.

8. Existence of productive aquifers—groundwater is a value that must be preserved. Thus, geological
units that correspond to productive aquifers were completely excluded on the basis of this criterion.

9. Environmental restrictions—this type of project is prohibited in natural parks and other protected
areas. This criterion was considered, but no geological formations favorable to in situ carbonation
were identified in protected areas.

Table 1. Screening and ranking criteria. The shaded bars represent the relative importance of the class
in each criterion. The final ranking results from the sum of the weight obtained in each criterion. If any
massif was assigned the class “eliminatory criterion” it was not further considered in the screening and
ranking procedure.

Criteria Classes Weight

Geological conditions

C1—Lithological composition

Ultramafic—more than
90% of mafic minerals 9
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 

Fewer than 3 fractures/m 1

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 20 

7. Social and demographic situation—building an industry for in situ carbonation will not be well 

accepted in urban areas. For this criterion, two categories were defined, wherein an index of 3 

was assigned to rural regions and zero was assigned to urban areas. 

8. Existence of productive aquifers—groundwater is a value that must be preserved. Thus, 

geological units that correspond to productive aquifers were completely excluded on the basis 

of this criterion. 

9. Environmental restrictions—this type of project is prohibited in natural parks and other 

protected areas. This criterion was considered, but no geological formations favorable to in situ 

carbonation were identified in protected areas. 

 

The final ranking of the rock massifs was obtained by adding the weights assigned to each 

criterion. 

Table 1. Screening and ranking criteria. The shaded bars represent the relative importance of the class 

in each criterion. The final ranking results from the sum of the weight obtained in each criterion. If 

any massif was assigned the class “eliminatory criterion” it was not further considered in the 

screening and ranking procedure. 

Criteria Classes Weight 

Geological conditions 

C1—Lithological 

composition 

Ultramafic—more than 90% of mafic minerals 9 ========= 

Mafic—40–90% mafic minerals 6 ====== 

Intermediate—10–39% of mafic minerals 1 = 

C2—Outcropping area 

Over 20 km2 3 === 

From 10 to 20 km2 2 == 

Less than 10 km2 1 = 

C3—Expected volume 

Over 20 km3 6 ====== 

From 10 to 20 km3  3 === 

Less than 10 km3 Eliminatory criterion 

C4—Existence of a seal 

unit 

Existent 3 === 

Not known 0  

C5—Fracture density 

More than 10 fractures/m 9 ========= 

3‒10 fractures/m  6 ====== 

Fewer than 3 fractures/m 1 = 

Socioeconomic constraints 

C6—Distance to CO2 

sources 

Less than 10 km 9 ========= 

From 10 to 100 km  6 ====== 

Over 100 km 1 = 

C7—Social and 

demographic situation 

Urban area 3 === 

Rural 0  

C8—Existence of 

productive aquifers 

No  3 === 

Yes Eliminatory criterion 

C9—Environmental 

restrictions 

No restrictions  0  

Protected areas  Eliminatory criterion 

2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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2.2. Petrographic, mineral chemistry, and geochemical techniques 

The samples collected in the first field trip were processed in thin sections for petrography and 

mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF) 

analysis (Figure 3). 
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The final ranking of the rock massifs was obtained by adding the weights assigned to each criterion.

2.2. Petrographic, Mineral Chemistry, and Geochemical Techniques

The samples collected in the first field trip were processed in thin sections for petrography and
mineral chemistry analysis and powdered for X-ray diffraction (XRD) and X-ray fluorescence (XRF)
analysis (Figure 3).Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 20 
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The petrography included conventional petrographic techniques by transmitted and reflected
light polarizing microscopy, complemented with scanning electron microscopy with energy-dispersive
spectroscopy (SEM–EDS), which also provided a valuable semi-quantitative analysis of the mineral
chemistry using a Hitachi S3700N interfaced with a Quanta EDS microanalysis system. The Quanta
system was equipped with a Bruker AXS XFlash Silicon Drift Detector (129 eV Spectral Resolution
at FWHM/MnKα). Standardless PB/ZAF (self-calibrating EDS spectrum procedure) quantitative
elemental analysis was performed using Bruker Espirit software. The operating conditions for EDS
analysis were 20 kV accelerating voltage, 10 mm working distance, and 120 µA emission current.
The detection limits for major elements (>Na) were on the order of 0.1 wt %.

The petrographic analysis was also complemented by detailed identification of crystalline phases
through XRD analysis using a Bruker AXS D8 Discover diffractometer with a Cu-Kα source, operating
at 40 kV and 40 mA with a Lynxeye one-dimensional detector. Scans were performed from 3 to 75◦ 2θ,
with a 0.05 2θ step and 1 s/step measuring time by point. Diffract-Eva Bruker software with PDF-2
database (Powder Diffraction File by the International Centre for Diffraction Data) was utilized to
interpret all XRD patterns.

The whole rock geochemistry analysis was conducted by XRF, which allows for the quantification of
major oxides (SiO2, TiO2, Al2O3, Na2O, K2O, CaO, MgO, MnO, FeO, and P2O5), sulfur, and some minor
elements (Rb, Sr, Y, Zr, Nb, Th, Cr, Co, Ni, Cu, Zn, Ga, As, Pb, Sn, V, U, and Cl). Analyses were performed
with an Energy-Dispersive X-Ray Spectrometer S2 Puma (Bruker) using a methodology similar to
that adopted by Georgiou [29]. A description of the standard reference materials (SRM) utilized in
the calibration method can be found elsewhere [30]. Samples were fused on a Claisse LeNeo heating
chamber using a flux (Li-tetraborate) to prepare fused beads (ratio sample/flux = 1/10). The software
utilized for acquisition and data processing was Spectra Elements 2.0, which reported the final
oxide/element concentrations and the instrumental statistical error associated with the measurement.

3. Results

A first selection of several geological formations located in the Alentejo region (Figure 4) was
made, which was considered potentially interesting due to their dimensions and lithological nature
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using the geological map of Portugal (scales 1/50,000, 1/200,000, and 1/500,000) and other general
bibliographic elements.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 20 
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Figure 4. Location of the studied units: (A) Variscan basement; (B) Mesozoic cover; (C) Cenozoic
cover; (1) Sines massif; (2) diabases of the Iberian Pyrite Belt; (3) gabbros of the Torrão-Odivelas region;
(4) Beja gabbros; (5) ophiolitic sequences: (a) internal ophiolitic sequences; (b) Beja-Acebuches ophiolitic
complex; (6) Alter do Chão/Cabeço de Vide massif; (7) Veiros massif; (8) Vale de Maceiras massif;
(9) Campo Maior massif; (10) Elvas massif.

Most of these units correspond to igneous, ultramafic, or mafic intrusive rocks of Paleozoic age
(gabbros and diorites of Torrão-Odivelas; Beja gabbros and igneous massifs of Alter do Chão/Cabeço de
Vide, Veiros, Vale de Maceiras, Campo Maior, and Elvas). The Sines massif is also mostly composed by
mafic rocks, but, having a Cretaceous age, is considerably more recent. The diabases from the Iberian
Pyrite Belt are part of a Lower Carbonic volcano sedimentary complex and the ophiolitic sequences are
mostly ultramafic and mafic rocks associated with the obduction of oceanic lithosphere during the
Variscan orogeny.

For each of the 10 geological units represented in Figure 4, we determined the values corresponding
to the nine criteria described. The sum of these values was used to rank the studied geological
formations. Table 2 presents the result of these calculations and the hierarchy of the units in terms of
their potentialities.
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Table 2. Ranking of ultrabasic and basic geological formations in the Alentejo region. A massif with an
ideal condition would have a total score of 45.

Geological Formation
Criterion

C1 C2 C3 C4 C5 C6 C7 C8 C9
∑

1—Sines massif 6 3 6 0 6 9 0 0 0 30

2—Diabases from Iberian
Pyrite Belt 1 2 3 3 9 6 3 0 0 27

3—Gabbros of
Torrão-Odivelas 6 3 6 3 1 6 3 0 0 28

4—Beja gabbros 6 3 6 0 1 1 3 Elim 0 —

5—Ophiolitic sequences 9 1 Elim 0 9 6 3 0 0 —

6—Alter do Chão/Cabeço
Vide massif 9 3 6 0 6 1 3 Elim 0 —

7—Veiros massif 6 1 Elim 0 1 1 3 0 0 —

8—Vale de Maceiras massif 6 2 3 0 1 1 3 0 0 16

9—Campo Maior massif 6 3 6 0 6 1 3 0 0 25

10—Elvas massif 6 2 3 0 6 1 0 0 0 18

Elim—eliminatory criterion.

Among the studied units, two were eliminated due to lack of size (the Veiros massif and
ophiolitic sequences because they are very fragmented), and two others were eliminated because they
corresponded to productive aquifers (Beja gabbros and Alter do Chão/Cabeço de Vide massif).

Regarding the remaining six units, we emphasize the excellent rating achieved by the Sines massif,
gabbros of Torrão-Odivelas, and diabases from the Iberian Pyrite Belt. The Sines massif, which was
ranked first and was selected for the first experiments, has the disadvantage of being located in an
urban area, but the great advantage of its location near the CO2-producing sources and its extension
for some kilometers into the continental shelf.

Further research is ongoing for the Sines and Torrão-Odivelas massifs. The remainder of this
article, as well as the article by Moita et al. [23] in this issue, address the works already conducted at
the Sines massif.

3.1. The Sines Massif

3.1.1. Geological Setting

The Sines massif (Figure 5) is located on the west Portuguese coast (southwest Iberia). Onshore
it has a relatively small area (≈10 km2), largely covered by Plio-Quaternary sediments, mainly
outcropping along the seacoast and in the Montes de Chãos quarry (Figure 6). It exhibits an elliptical
shape that is elongated into the continental shelf and has been interpreted by Teixeira [31] and
Ribeiro et al. [32] as a subvolcanic ring structure. Carvalho et al. [33], resorting to geophysical data
(magnetic, gravimetric, and seismic reflection), were able to model the offshore of the massif, along a
NE–SW trend, and covering an area of ≈300 km2.
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Together with the Sintra and Monchique massifs, the volcanic complex of Lisbon, and several
other minor intrusions, the Sines Massif is part of a Late Cretaceous alkaline magmatic cycle dated to
ca. 22 Ma (94–72 Ma) [35].

The Sines massif is mainly formed of gabbros, diorites, and syenites, with a profusion of dykes of
variable composition (basalts, microgabbros, microdiorites, trachybasalts, lamprophyres, trachytes,
and microsyenites [34,36]). Despite the Cenozoic sedimentary cover, the geological map of Portugal
at 1/50,000 scale (sheet 42-C, Santiago de Cacém [34]) shows that these intrusive rocks cut the
Carboniferous flysch at the south (Mira Formation) and Lower Jurassic carbonate rocks at the north.
A model of multiphase emplacement is accepted for the genesis of the Sines massif, with the intrusion
of gabbro-diorite, followed by the intrusion of syenite, and finally the net of dykes that cut the intrusive
massif rocks and the surrounding country rocks.

3.1.2. Fracture Characterization

In the field, the observed rocks of the Sines massif displayed very low primary porosity, as is
expected for plutonic rocks. Therefore, the characterization of the fracture patterns is fundamental
for an indirect assessment of the permeability of the massif and, consequently, for the viability of the
gabbro and diorite being used for in situ mineral carbonation. The exposure at the walls of Montes
de Chãos quarry is the best place to analyze the fracture patterns of the Sines massif. The obtained
fracturing density diagram poles is shown in Figure 7.
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For a more detailed fracture analysis, we performed several scanlines. This method consists of
stretching a line along the walls of the quarry and measuring the intersection of the line with any
discontinuity. To quantify the rock mass rating, we freely adapted the RQD (Rock Quality Designation)
index, applied routinely to evaluate the fracture frequency in drill cores, which was calculated as the
percentage of unfractured rock segments longer than 10 cm along the scanlines. That is, RQD was
used here to quantify, along the scanlines, the percentage of consecutive fractures that were more than
10 cm apart. The scan lines and RQD results are listed in Table 3.
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Table 3. Scanline data, RQD (Rock Quality Designation) index, and scanline statistics. Latitude and
longitude refer to the starting point of each scanline. Scanline 2* corresponds to the continuity of
resuming observations along the same azimuth of scanline 2 after following 25 m of no collected data
due to outcrop inaccessibility.

Scanline 1 Scanline 2 Scanline 2* Scanline 3

Data

Length (cm) 1275 1250 590 2630

Latitude 37.94978◦ 37.9514◦ 37.94924◦

Longitude −8.85078◦ −8.84634◦ −8.84187◦

Azimuth 70◦ 60◦ 135◦

Number of
discontinuities 63 62 66 153

Discontinuities per m 4.9 5.0 11.2 5.8

Length of section
between two

consecutives fractures
(cm)

Average 24.5 24.5 10.7 10.7

Standard deviation 20.7 23.2 11.0 11.0

Maximum value 103 120 57 57

Minimum value 4 3 1 1

Sum of sections > 10 cm 1167 1150 373 373

RQD (%) 91.5 92.0 63.2 63.2

The data show a variety of orientations, which means it is not possible to establish a geometrically
well-defined fracture pattern. The average spacing between fractures (10.7–24.5 cm) revealed
a heterogeneous pattern with medium-density fractures, suggesting some secondary porosity,
which increases the potential surface area available for reaction.

These results are consistent with those recently obtained by drilling cores in an internal report
requested by the Administration of the Port of Sines [37], which states that the gabbro-diorite massif
in general has good to excellent geotechnical quality, occasionally reasonable, especially in the most
superficial areas of the massif. During the surveys carried out, the extraction of continuous rock cores
without fractures was frequent, revealing the excellent geotechnical quality of the gabbro-diorite massif.

3.1.3. Petrography, Mineral Chemistry, and Geochemistry

Two coarse-grained ultramafic to mafic samples from the Sines massif were collected for laboratory
characterization and mineral carbonation experiments—a melanocratic cumulate gabbro at a cliff near
Praia do Norte (Figures 5 and 6c) and a gabbro-diorite at Montes de Chãos quarry (Figures 5 and 6d).

The cumulate gabbro sample displayed a medium to coarse igneous texture that preserved the
ferromagnesian mineral phases. The mineral composition was found to be clinopyroxene (45–55%),
olivine (15–20%), brown-amphibole (10–15%), plagioclase (5–10%), and primary ilmenite (5%) (Figure 8),
although occasionally showed accessory alteration products (e.g., chlorite, actinolite, and serpentine).
These secondary mineral phases occurred around the olivine, as well as around some pyroxene crystals.
The enrichment in ferromagnesian minerals and their textural relations revealed cumulated textures,
with amphibole crystals developing a poikilitic texture.

The mineral chemistry (Table 4) indicated the presence of magnesium olivines (Fo = 0.52–0.67),
Ca–Fe–Mg clinopyroxenes with diopside–augite compositions, Ti-rich amphiboles (tschermakite
horneblende), and calcic plagioclases with bytownite–labradorite compositions (An = 0.67–0.79).
Except for ilmenite, which was not detected in the XRD diffractogram where the presence of magnetite
was revealed, suggesting equilibrium at low temperatures in the oxide phases, we confirmed all
primary mineralogy by XRD analysis (Figure 9). The rock geochemistry data (Table 5) showed very
low SiO2 contents (42.3 wt %), compatible with an ultrabasic composition, and high MgO (12.90 wt %),
CaO (12.7 wt %), Fe2O3 (15.15 wt %), Cr (478 ppm), and Ni (117 ppm). This compositional spectrum,
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coupled with a high value of TiO2 (3.34 wt %), agrees with the observed enrichment in ferromagnesian
mineral and denotes magmatic alkaline features.
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Table 4. Mineral chemistry by scanning electron microscopy with energy-dispersive spectroscopy
(SEM–EDS) in atomic percent (at %).
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Cumulate Gabbro

Olivine
n = 5

Pyroxene
n = 3

Amphibole
n = 4

Plagioclase
n = 4

Ilmenite
n = 2

Min Max Min Max Min Max Min Max Min Max

O 61.567 63.646 60.440 61.007 59.764 60.797 62.562 65.073 61.711 61.529
Si 10.764 11.855 15.941 16.566 12.313 12.986 13.904 14.814 0.804 0.600
Ti n.d. n.d. 0.350 0.439 1.637 1.771 n.d. n.d. 15.833 16.344
Al 0.100 0.618 1.744 1.974 5.204 5.540 12.922 14.320 0.534 0.840
Mg 12.844 17.564 8.382 8.833 7.560 7.860 n.d. n.d. 1.321 2.518
Fe 8.741 11.914 2.565 2.849 3.726 3.938 n.d. n.d. 19.115 17.567
Ca 0.207 0.366 7.920 8.869 5.190 5.470 5.161 6.562 0.275 0.215
Mn 0.000 0.222 0.000 0.133 0.000 0.129 n.d. n.d. 1.321 0.383
Na n.d. n.d. 1.056 1.122 2.124 2.390 1.661 2.558 n.d. n.d.
K n.d. n.d. n.d. n.d. 0.524 0.584 0.000 0.295 n.d. n.d.

Ca/(Ca + Na) 0.67 0.79
Mg/(Mg + Fe) 0.52 0.67

at %
Gabbro-Diorite

Olivine
n = 3

Pyroxene
n = 4

Biotite
n = 3

Plagioclase
n = 4

Ilmenite
n = 2

Min Max Min Max Min Max Min Max Min Max

O 57.796 58.844 58.346 58.900 55.762 58.686 59.420 61.240 58.265 60.052
Si 11.846 12.429 16.456 17.472 12.624 14.348 18.240 19.420 2.412 1.765
Ti n.d. n.d. 0.450 0.571 1.801 2.563 n.d. n.d. 8.199 16.736
Al 0.416 1.429 1.614 2.020 6.975 7.953 11.050 12.140 1.611 0.656
Mg 11.298 12.612 8.717 9.051 6.689 8.348 n.d. n.d. 2.007 1.685
Fe 14.933 16.937 3.237 3.617 5.626 6.764 n.d. n.d. 26.594 18.319
Ca 0.213 0.426 8.111 9.361 n.d. n.d. 3.960 5.220 0.598 0.272
Mn 0.375 0.446 0.130 0.160 n.d. n.d. n.d. n.d. 0.314 0.514
Na n.d. n.d. 0.982 1.132 1.005 1.639 1.633 2.530 n.d. n.d.
K n.d. n.d. n.d. n.d. 4.523 4.547 0.270 0.390 n.d. n.d.

Ca/(Ca + Na) 0.61 0.72
Mg/(Mg + Fe) 0.40 0.46

n—number of analyses; n.d.—not determined.
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Table 5. Geochemical data in weight percent (wt %) and parts per million (ppm).

Cumulate Gabbro Gabbro-Diorite

wt % Stat Error wt % Stat Error

SiO2 42.30 ±0.0344 49.00 ±0.0356
TiO2 3.34 ±0.0175 3.26 ±0.0176

Al2O3 9.40 ±0.0295 16.20 ±0.0368
Fe2O3 15.50 ±0.0133 11.20 ±0.0115
P2O5 0.28 ±0.00427 0.85 ±0.00506
MnO 0.40 ±0.005 0.32 ±0.005
MgO 12.90 ±0.0506 4.48 ±0.0349
CaO 12.70 ±0.0428 8.33 ±0.0375
BaO 0.23 ±0.013 0.28 ±0.013

Na2O 0.84 ±0.0519 3.46 ±0.0607
K2O 0.19 ±0.0345 1.42 ±0.0395
LOI 0.89 - 0.03 -
Total 98.97 - 98.83 -

ppm ppm
S 1900 ±17.2 1500 ±16.2

Rb 9 ±2.08 40 ±2.24
Sr 286 ±2.57 748 ±3.09
Y 15 ±2.30 34 ±2.46
Zr 80 ±2.82 199 ±3.14
Nb 20 ±2.52 62 ±2.65
Th 9 ±2.94 10 ±3.10
Cr 478 ±29.0 20 ±25.4
Co 198 ±5.65 139 ±5.02
Ni 117 ±4.12 7 ±3.42
Cu 62 ±4.82 42 ±4.88
Zn 103 ±6.07 108 ±6.37
Ga 14 ±4.30 25 ±4.67
As 7 ±4.29 8 ±4.53
Pb 0 ±0 12 ±17.2
Sn 7 ±27.3 0 ±0
V 479 ±68.0 323 ±68.0
U 0 ±0.209 2 ±0.221
Cl 43 ±0.364 53 ±0.359

The gabbro-diorite sample exhibited a hypidiomorphic texture and was found to be composed
of plagioclase (50–60%) and clinopyroxene (20–25%), and, to a lesser extent, olivine (5–10%), biotite
(10–15%), and ilmenite (5–10%). The sample was heterogeneous, with plagioclase-enriched layers
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alternated with ferromagnesian-enriched layers. Despite some fractures with chlorite and incipient
sericitization, the sample had no significant alteration.

The mineral chemistry data (Table 4) indicated a more evolved composition with ferrous olivines
(Fo = 0.40–0.46), diopside–augite compositions for clinopyroxenes, slightly fewer calcium plagioclases
(An = 0.61–0.72), ferromagnesium micas, and Fe-rich ilmenite. The XRD (Figure 9) and mineral
chemistry (Table 4) data support the previous observed and analyzed mineralogy. The geochemical
data revealed (Table 5) a basic composition (SiO2 = 49.00 wt %) and displayed lower MgO (4.48 wt %),
CaO (8.33 wt %), and Fe2O3 (11.20 wt %), enhanced by low Cr (20 ppm) and Ni (7 ppm) and high Sr
(748 ppm) values, which were directly related to the modal abundance of plagioclase, clinopyroxene,
and olivine. The established basic composition and the TiO2 value (3.26 wt %) obtained for the
gabbro-diorite agree with the values reported by Canilho [38].

4. Discussion

In general, according to Schaef et al. [39], Rosenbauer et al. [40], and Alfredsson et al. [41],
the injection of carbon dioxide into basaltic rocks has several advantages in comparison with sedimentary
basins if the storage of CO2 is through its mineral carbonation. Effective mineral carbonation of
CO2 is best achieved with ultrabasic or basic volcanic rocks due to the high contents of Mg2+, Fe2+,
and Ca2+ in ferromagnesian mineral phases, which can react with CO2 and precipitate as carbonates
(e.g., magnesite, siderite, or calcite).

Since basalt carbonation could therefore become an important carbon storage solution [15],
we selected 10 ultramafic and mafic rock areas in this study as a potential area for CO2 storage.
In a preliminary phase of site characterization for CO2 geological storage in ultrabasic and basic
volcanic rocks, we selected one geological formation with the potential to be considered as adequate
for CO2 storage. Comparing the 10 studied areas, we found that the Sines massif had more favorable
characteristics (Table 3) than the other areas with respect to all the relevant parameters evaluated
(Table 2). Its location, only a few kilometers from the main CO2 sources in the region, which would
avoid excessive transport costs, coupled with the large expected volume of cumulate gabbro with a
high percentage of mafic minerals, provided the best prospect in the study area for the implementation
of mineral carbonation projects.

Despite the subvolcanic (intrusive) nature of the Sines massif, the study of mafic lithologies,
in particular the cumulate gabbros with more than 60% of ferromagnesian minerals, presented
the chemical and mineralogical features theoretically required for mineral carbonation. Frequently,
the boundaries between the cumulate gabbros and diorites were unclear, and thus it became necessary
to test not only the more mafic lithologies but also the dioritic rocks in order to assess the mineral
carbonation potential of the rock massif.

As such, samples of both rock types were tested in laboratory experiments to quantify their
reactivity with a natural brine highly saturated with CO2, under supercritical conditions, to understand
the chemical reactions that are expected to occur in the area immediately surrounding an injection well.
These laboratory experiments were designed to assess whether the CO2–water–rock interaction would
dissolve the cations of cumulate gabbros and gabbro-diorites necessary to react the CO2 and promote
fast mineral carbonation.

The Sines massif is ideally located close to the CO2 sources in the region, which are hundreds of
meters to a few kilometers away from the cumulate gabbros outcrops. A further advantage is that
the subvolcanic massif extends from those outcrops to the offshore, where it encompasses a much
larger area, most of which is covered by recent sediments. A scenario of CO2 injection in the cumulate
gabbros in the near offshore could be used to assess whether the fracture permeability is sufficient
to allow for injection. Geophysical surveys and reinterpretation of previous data were necessary to
clarify the offshore area, volume, and fracture pattern. The studies of fracture density did not show a
consistent and pervasive fracture pattern, and it is expected that fracture density decreases with depth,
which may make an in situ carbonation process unviable.
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Mineral carbonation can also be achieved ex situ by resorting to the mining of the cumulate
gabbros in quarries and promoting its reaction with CO2 in specifically built facilities. A large quarry
already exists in the Sines massif. Enhanced weathering is another possibility. The biggest contributor
to the natural cycle of removing carbon dioxide from the atmosphere is the chemical weathering
of certain types of rocks. This process is obviously very slow, but some studies (e.g., [22–42]) have
demonstrated that, under the right conditions, the utilization of crushed mafic rocks could result in
a net removal of CO2 from the atmosphere. The mineral carbonation experiments being conducted
should indicate whether the cumulate gabbros and gabbro-diorites from the Sines massif have some
potential for these applications.

5. Conclusions

Several outcropping mafic rock massifs in the south of Portugal may present an opportunity for
mineral carbonation from the CO2 sources located in the region, which make up the largest industrial
cluster in the country. The conditions of these rock massifs, composed primarily of plutonic rocks, are
far from ideal in terms of porosity and permeability, and thus we adopted a set of ranking criteria to
select the rock massifs that may present the highest potential. The adopted ranking criteria considered
geological factors and socioeconomic and environmental constrains, with the most relevant being
the percentage of mafic minerals, the fracture density, and the proximity to CO2 sources to minimize
transport costs. Criteria such as exceptionally low expected volume, the existence of productive
aquifers, and environmentally protected areas were eliminatory factors.

Application of the screening and ranking procedure allowed us to select, from the identified
10 ultramafic and mafic rock massifs in the study area, the two with the best conditions for mineral
carbonation—the Sines massif and the gabbros from Torrão-Odivelas massif.

The petrographic, mineral chemistry, and geochemical study of samples from the Sines massif
demonstrated that the mineralogy of the cumulate gabbros is, theoretically, very favorable for mineral
carbonation, with a higher percentage of ferromagnesian minerals than was previously documented.
This has prompted mineral carbonation experiments in which the rock samples are submerged in a
brine supersaturated in CO2, under pressure and temperature conditions enough to ensure supercritical
CO2 conditions, in order to understand the CO2–brine–CO2 reactions. These experiments and their
results are described in a second article [23].
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